相关文章
一文通透位置编码:从标准位置编码、旋转位置编码RoPE到ALiBi、LLaMA 2 Long(含NTK-aware简介)
前言
关于位置编码和RoPE
应用广泛,是很多大模型使用的一种位置编码方式,包括且不限于LLaMA、baichuan、ChatGLM等等我之前在本博客中的另外两篇文章中有阐述过(一篇是关于LLaMA解读的,一篇是关于transformer从零实现的),但自觉…
建站知识
2025/1/20 22:50:55
卷积神经网络权重是什么,卷积神经网络卷积过程
卷积神经网络算法是什么?
一维构筑、二维构筑、全卷积构筑。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。
卷积神经网络具有表征学习(re…
建站知识
2025/1/20 22:41:39
Python神经网络编程(二)之更新神经网络权重
那么我们接着上节开始讲更新权重、权重示例以及神经网路的准备布局。 Github源码地址:https://github.com/hzka/PythonNetworkBook
1.14我们实际上是如何更新权重的。 (一) 以简单的3层,每层3个节点的神经网络为例。最后…
建站知识
2025/1/19 13:53:56
深度学习相关概念:权重初始化
深度学习相关概念:权重初始化 1.全零初始化()2.随机初始化2.1 高斯分布/均匀分布2.1.1权重较小— N ( 0 , 0.01 ) \pmb{\mathcal{N}(0,0.01)} N(0,0.01)2.1.1权重较大— N ( 0 , 1 ) \pmb{\mathcal{N}(0,1)} N(0,1)2.1.3存在问题:…
建站知识
2025/1/3 1:41:05
深度学习基础知识(一)--- 权重初始化
1、为什么需要权重初始化?
① 为了使神经网络在合理的时间内收敛
② 为了尽量避免在深度神经网络的正向(前向)传播过程中层激活函数的输出梯度出现爆炸或消失。 2、如何进行初始化?
①如果将每个隐藏单元的参数都初始化为0
那么在正向传播时每个隐藏单元将根据相同的输…
建站知识
2025/1/2 20:47:42
损失函数与正则项(惩罚项),多loss间权重设计
目录 正则项(惩罚项)正则项(惩罚项)的本质机器学习为什么需要正则项常见惩罚项:参数范数惩罚、稀疏表征、噪声、早停、dropout等参数范数惩罚L0范数惩罚L1范数惩罚(参数稀疏性惩罚)L2范数惩罚:l1正则与l2正…
建站知识
2024/12/25 18:54:35
Yolov5 代码从入门到畅通(v6.2) 附代码注释
目录 前言1. detect.py1.1 传入、处理参数1.2 新建文件夹1.3 模型加载1.4 加载带预测图1.5 执行推理模型1.6 打印信息 2. yolo.py2.1 配置文件2.2 初始化2.3 网络模型2.4 其他函数 3. train.py3.1 传入、解析参数3.2 日志初始化3.3 是否断点恢复3.4 选择设备3.5 训练过程3.5.1 …
建站知识
2025/1/3 0:50:27
深度学习优化策略---权重、权重初始化与权重衰减
权重的维度保持为 2 的幂
即便是运行最先进的深度学习模型,使用最新、最强大的计算硬件,内存管理仍然在字节(byte)级别上进行。所以,把参数保持在 64, 128, 512, 1024 等 2 的次方永远是件好事。这也许能帮助分割矩阵…
建站知识
2025/1/2 18:30:53